miércoles, 4 de julio de 2012

Robótica


Es la rama de la tecnología que se dedica al diseño, construcción, operación, disposición estructural, manufactura y aplicación de los robots. La robótica combina diversas disciplinas como son: la mecánica, la electrónica, la informática, la inteligencia artificial y la ingeniería de control. Otras áreas importantes en robótica son el álgebra, los autómatas programables y las máquinas de estados.

El término robot se popularizó con el éxito de la obra RUR (Robots Universales Rossum), escrita por Karel Capek en 1920. En la traducción al inglés de dicha obra, la palabra checa robota, que significa trabajos forzados, fue traducida al inglés como robot.
 
Clasificación de los robots:
Según su cronología: 
La que a continuación se presenta es la clasificación más común:
  • 1ª Generación: Manipuladores. Son sistemas mecánicos multifuncionales con un sencillo sistema de control, bien manual, de secuencia fija o de secuencia variable.
  • 2ª Generación: Robots de aprendizaje. Repiten una secuencia de movimientos que ha sido ejecutada previamente por un operador humano. El modo de hacerlo es a través de un dispositivo mecánico. El operador realiza los movimientos requeridos mientras el robot le sigue y los memoriza.
  • 3ª Generación: Robots con control sensorizado. El controlador es una computadora que ejecuta las órdenes de un programa y las envía al manipulador para que realice los movimientos necesarios.
  • 4ª Generación: Robots inteligentes. Son similares a los anteriores, pero además poseen sensores que envían información a la computadora de control sobre el estado del proceso. Esto permite una toma inteligente de decisiones y el control del proceso en tiempo real.

Según su arquitectura: 

La arquitectura, es definida por el tipo de configuración general del Robot, puede ser metamórfica. El concepto de metamorfismo, de reciente aparición, se ha introducido para incrementar la flexibilidad funcional de un Robot a través del cambio de su configuración por el propio Robot. El metamorfismo admite diversos niveles, desde los más elementales (cambio de herramienta o de efecto terminal), hasta los más complejos como el cambio o alteración de algunos de sus elementos o subsistemas estructurales. Los dispositivos y mecanismos que pueden agruparse bajo la denominación genérica del Robot, tal como se ha indicado, son muy diversos y es por tanto difícil establecer una clasificación coherente de los mismos que resista un análisis crítico y riguroso. La subdivisión de los Robots, con base en su arquitectura, se hace en los siguientes grupos: poliarticulados, móviles, androides, zoomórficos e híbridos.

 
1. Poliarticulados: Es un grupo están los Robots de muy diversa forma y configuración cuya característica común es la de ser básicamente sedentarios (aunque excepcionalmente pueden ser guiados para efectuar desplazamientos limitados) y estar estructurados para mover sus elementos terminales en un determinado espacio de trabajo según uno o más sistemas de coordenadas y con un número limitado de grados de libertad. En este grupo se encuentran los manipuladores, los Robots industriales, los Robots cartesianos y se emplean cuando es preciso abarcar una zona de trabajo relativamente amplia o alargada, actuar sobre objetos con un plano de simetría vertical o reducir el espacio ocupado en el suelo.

 

2. Móviles: Son Robots con grandes capacidades de desplazamiento, basadas en carros o plataformas y dotadas de un sistema locomotor de tipo rodante. Siguen su camino por telemando o guiándose por la información recibida de su entorno a través de sus sensores. Estos Robots aseguran el transporte de piezas de un punto a otro de una cadena de fabricación. Guiados mediante pistas materializadas a través de la radiación electromagnética de circuitos empotrados en el suelo, o a través de bandas detectadas fotoeléctricamente, pueden incluso llegar a sortear obstáculos y están dotados de un nivel relativamente elevado de inteligencia.



3. Androides: Son Robots que intentan reproducir total o parcialmente la forma y el comportamiento cinemática del ser humano. Actualmente los androides son todavía dispositivos muy poco evolucionados y sin utilidad práctica, y destinados, fundamentalmente, al estudio y experimentación. Uno de los aspectos más complejos de estos Robots, y sobre el que se centra la mayoría de los trabajos, es el de la locomoción bípeda. En este caso, el principal problema es controlar dinámica y coordinadamente en el tiempo real el proceso y mantener simultáneamente el equilibrio del Robot.

 

 

4. Zoomórficos: Los Robots zoomórficos, que considerados en sentido no restrictivo podrían incluir también a los androides, constituyen una clase caracterizada principalmente por sus sistemas de locomoción que imitan a los diversos seres vivos. A pesar de la disparidad morfológica de sus posibles sistemas de locomoción es conveniente agrupar a los Robots zoomórficos en dos categorías principales: caminadores y no caminadores. El grupo de los Robots zoomórficos no caminadores está muy poco evolucionado. Los experimentados efectuados en Japón basados en segmentos cilíndricos biselados acoplados axialmente entre sí y dotados de un movimiento relativo de rotación. Los Robots zoomórficos caminadores multípedos son muy numeroso y están siendo experimentados en diversos laboratorios con vistas al desarrollo posterior de verdaderos vehículos terrenos, piloteando o autónomos, capaces de evolucionar en superficies muy accidentadas. Las aplicaciones de estos Robots serán interesantes en el campo de la exploración espacial y en el estudio de los volcanes.

 

5. Híbridos: Corresponden a aquellos de difícil clasificación cuya estructura se sitúa en combinación con alguna de las anteriores ya expuestas, bien sea por conjunción o por yuxtaposición. Por ejemplo, un dispositivo segmentado articulado y con ruedas, es al mismo tiempo uno de los atributos de los Robots móviles y de los Robots zoomórficos.

Lógica Difusa


La lógica difusa o lógica heurística se basa en lo relativo de lo observado como posición diferencial. Este tipo de lógica toma dos valores aleatorios, pero contextualizados y referidos entre sí. Así, por ejemplo, una persona que mida 2 metros es claramente una persona alta, si previamente se ha tomado el valor de persona baja y se ha establecido en 1 metro. Ambos valores están contextualizados a personas y referidos a una medida métrica lineal.

Funcionamiento:
La lógica difusa se adapta mejor al mundo real en el que vivimos, e incluso puede comprender y funcionar con nuestras expresiones, del tipo "hace mucho calor", "no es muy alto", "el ritmo del corazón está un poco acelerado", etc.

La clave de esta adaptación al lenguaje, se basa en comprender los cuantificadores de nuestro lenguaje (en los ejemplos de arriba "mucho", "muy" y "un poco").

En la teoría de conjuntos difusos se definen también las operaciones de unión, intersección, diferencia, negación o complemento, y otras operaciones sobre conjuntos (ver también subconjunto difuso), en los que se basa esta lógica.

Para cada conjunto difuso, existe asociada una función de pertenencia para sus elementos, que indican en qué medida el elemento forma parte de ese conjunto difuso. Las formas de las funciones de pertenencia más típicas son trapezoidales, lineales y curvas.

Se basa en reglas heurísticas de la forma SI (antecedente) ENTONCES (consecuente), donde el antecedente y el consecuente son también conjuntos difusos, ya sea puros o resultado de operar con ellos. Sirvan como ejemplos de regla heurística para esta lógica (nótese la importancia de las palabras "muchísimo", "drásticamente", "un poco" y "levemente" para la lógica difusa):
  • SI hace muchísimo calor ENTONCES aumentó drásticamente la temperatura.
  • SI voy a llegar un poco tarde ENTONCES aumento levemente la velocidad.
Los métodos de inferencia para esta base de reglas deben ser simples, veloces y eficaces. Los resultados de dichos métodos son un área final, fruto de un conjunto de áreas solapadas entre sí (cada área es resultado de una regla de inferencia). Para escoger una salida concreta a partir de tanta premisa difusa, el método más usado es el del centroide, en el que la salida final será el centro de gravedad del área total resultante.

Las reglas de las que dispone el motor de inferencia de un sistema difuso pueden ser formuladas por expertos, o bien aprendidas por el propio sistema, haciendo uso en este caso de redes neuronales para fortalecer las futuras tomas de decisiones.

Los datos de entrada suelen ser recogidos por sensores, que miden las variables de entrada de un sistema. El motor de inferencias se basa en chips difusos, que están aumentando exponencialmente su capacidad de procesamiento de reglas año a año.

Aplicaciones
La lógica difusa se utiliza cuando la complejidad del proceso en cuestión es muy alta y no existen modelos matemáticos precisos, para procesos altamente no lineales y cuando se envuelven definiciones y conocimiento no estrictamente definido (impreciso o subjetivo).

En cambio, no es una buena idea usarla cuando algún modelo matemático ya soluciona eficientemente el problema, cuando los problemas son lineales o cuando no tienen solución.

Esta técnica se ha empleado con bastante éxito en la industria, principalmente en Japón, y cada vez se está usando en gran multitud de campos. La primera vez que se usó de forma importante fue en el metro japonés, con excelentes resultados. A continuación se citan algunos ejemplos de su aplicación:
  • Sistemas de control de acondicionadores de aire
  • Sistemas de foco automático en cámaras fotográficas
  • Electrodomésticos familiares (frigoríficos, lavadoras...)
  • Optimización de sistemas de control industriales
  • Sistemas de escritura
  • Mejora en la eficiencia del uso de combustible en motores
  • Sistemas expertos del conocimiento (simular el comportamiento de un experto humano)
  • Tecnología informática
  • Bases de datos difusas: Almacenar y consultar información imprecisa. Para este punto, por ejemplo, existe el lenguaje FSQL.
  • En general, en la gran mayoría de los sistemas de control que no dependen de un Sí/No.

martes, 3 de julio de 2012

Sistemas Expertos


Es una rama de la Inteligencia Artificial, son sistemas informáticos que simulan el proceso de aprendizaje, de memorización, de razonamiento, de comunicación y de acción en consecuencia de un experto humano en cualquier rama de la ciencia.

Estas características le permiten almacenar datos y conocimiento, sacar conclusiones lógicas, tomar decisiones, aprender de la experiencia y los datos existentes, comunicarse con expertos humanos, explicar el por qué de las decisiones tomadas y realizar acciones como consecuencia de todo lo anterior.

Técnicamente un sistema experto, contiene una base de conocimientos que incluye la experiencia acumulada de expertos humanos y un conjunto de reglas para aplicar ésta base de conocimientos en una situación particular que se le indica al programa. Cada vez el sistema se mejora con adiciones a la base de conocimientos o al conjunto de reglas.
Ventajas de utilizar un Sistema Experto: 
  1. Con la ayuda de un Sistema Experto, personas con poca experiencia pueden resolver problemas que requieren un "conocimiento formal especializado".
  2. Los Sistemas Expertos pueden obtener conclusiones y resolver problemas de forma más rápida que los expertos humanos.
  3. Los Sistemas Expertos razonan pero en base a un conocimiento adquirido y no tienen sitio para la subjetividad. 
  4. Se ha comprobado que los Sistemas Expertos tienen al menos, la misma competencia que un especialista humano.
  5. El uso de Sistemas Expertos es especialmente recomendado en las siguientes situaciones: 
  • Cuando los expertos humanos en una determinada materia son escasos. 
  • En situaciones complejas, donde la subjetividad humana puede llevar a conclusiones erróneas. 
  • Cuando es muy elevado el volumen de datos que ha de considerarse para obtener una conclusión.

Aplicaciones:
Medicina, Economía, Psicología, Finanzas, Derecho y prácticamente todas las ramas del conocimiento.